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Abstract: This work explores the effectiveness of explainable artificial intelligence in map-
ping solar photovoltaic power outputs based on weather data, focusing on short-term
mappings. We analyzed the impact values provided by the Shapley additive explana-
tion method when applied to two algorithms designed for tabular data—XGBoost and
TabNet—and conducted a comprehensive evaluation of the overall model and across
seasons. Our findings revealed that the impact of selected features remained relatively
consistent throughout the year, underscoring their uniformity across seasons. Additionally,
we propose a feature selection methodology utilizing the explanation values to produce
more efficient models, by reducing data requirements while maintaining performance
within a threshold of the original model. The effectiveness of the proposed methodology
was demonstrated through its application to a residential dataset in Madeira, Portugal,
augmented with weather data sourced from SolCast.

Keywords: explainable artificial intelligence; feature selection; machine learning; photo-
voltaic seasonality

1. Introduction
Solar Photovoltaic (PV) systems are being widely deployed, transforming the global

energy landscape by harnessing abundant solar power. This proliferation offers several
benefits, including reduced carbon emissions, enhanced energy independence, and lower
electricity costs. However, it also presents challenges, such as managing the inconsistency of
solar output and the growing need for energy storage solutions to ensure reliable supply [1].

Hence, accurate forecasting of PV production has become crucial to the global energy
transformation. For instance, accurate forecasts help to balance supply and demand, pre-
venting issues like overloading or underutilization [2,3]. In energy communities, forecasts
enable members to optimize shared resources, plan energy usage, and make informed
decisions about trading energy [4]. Additionally, PV forecasts support better energy storage
management, ensuring that batteries are charged and discharged efficiently [5], and aid in
scheduling the charging of electric vehicles at optimal times [6].

With the increased use of Machine Learning (ML) and the development of increasingly
intricate models, uncovering the reasoning behind model behavior and associated decision-
making processes becomes progressively more challenging. Use of eXplainable Artificial
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Intelligence (XAI) is gaining popularity as a potential solution to these challenges [7,8].
Specifically, DARPA’s XAI program emphasizes the need for artificial intelligence systems
to be interpretable, to ensure transparency, and build user trust in various domains such as
medicine and finance [7]. DARPA’s work also highlighted the role and impact of explana-
tions for artificial intelligence models. XAI methodologies were approached in the context
of energy and power systems in [8], to enhance model reliability and build user confidence
that decisions are correct and logical. Additionally, methods such as Local Interpretable
Model-Agnostic Explanation (LIME) and SHapley Additive exPlanations (SHAP) were
discussed and evaluated by their effectiveness. The use of XAI provides further information
to the user and justifies the model outputs, allowing greater accuracy and transparency
regarding decisions. Depending on the target audience, XAI may prove useful in avoiding
model bias and unreasonable decisions. The potential for XAI applications in this domain
remains untapped and could be leveraged to provide better selection mechanisms, as an
understanding of the relationships between performance and feature importance could
potentially benefit forecast approaches.

In this regard, XAI has emerged as a valuable tool in PV forecasting, particularly for
complex models such as neural networks. Studies have highlighted the importance of
understanding the relationships between inputs and outputs, particularly for key features
like solar irradiance, temperature, and humidity [9–11]. For instance, the authors of [10]
used XAI to study the relationships between features of the dataset used, in addition to
data analysis, error estimation, and fault detection. Another instance of using XAI for un-
covering relationships between features can be found in [11], where environmental features
were studied concerning model outputs. Similarly, the authors of [12] drew attention to
an uncovered relationship between environmental features and PV output, with higher
altitudes, in particular, as the most important feature driving the production, constituting
one of their key findings and takeaway recommendations. Fault detection in PV systems
has been studied employing different XAI strategies [13], with SHAP demonstrating in-
creased stability and consistency over other studied methods. However, the literature has
not explored the variation in such relationships across seasons. Furthermore, the possibility
of using XAI for feature selections has only briefly been touched upon by the research
community, with mixed results: one study reported improved accuracy after removing less
important features, while another found a decline in performance [14,15].

Against this background, this paper presents two original research contributions in
the field of PV interpretability and XAI, specifically

• We present a methodological framework for applying XAI to PV forecasting algorithms
using SHAP local explanations. This framework was applied to a real-world dataset
comprising two years of PV forecasting data from Madeira, Portugal, to uncover how
feature importance varied throughout the year. By focusing on seasonal variations, this
research offers valuable insights into how different factors influence PV forecasting
models over time, addressing a gap in the literature where XAI’s application across
seasons has been largely underexplored. The results showed an improvement in the
performance of the forecasting methods (accuracy and computational cost).

• A feature selection methodology for PV forecasting, based on SHAP techniques, aimed
at reducing computational costs through an informed reduction in the feature space
and consequently of the model size. This methodology was evaluated using the
dataset mentioned in the previous contribution. A comparison with classic feature
extraction methods, namely Spearman correlation and variance threshold, is also
presented.

The structure of this paper is as follows: Section 2 presents some background and
related works on the topics of PV forecasting, XAI, and their intersection. Section 3 presents



Energies 2025, 18, 1282 3 of 17

the methods proposed in this paper, namely the development of model explanations and
feature selection leveraging SHAP values. Section 4 describes the evaluation procedure,
including an explanation of the datasets and the two experiments that were designed to
assess the validity of the proposed methods. The results and discussion are presented
in Section 5. The paper concludes in Section 6, with a summary of the main findings,
limitations, and suggestions for future research.

2. Background and Related Works
2.1. PV Production Forecasting

Despite advances in PV production forecasting and the increasing availability of
historical data, it remains an active research topic due to dependencies on variables such as
geographic location, weather patterns, desired forecast horizons, and other phenomena.
Depending on the variables used, model generalization and training can be quite complex,
with works tackling short-term forecasting to long-term forecasting, as well as presenting a
myriad of different algorithms, ranging from simple linear regressions to ensemble methods
and, more recently, Deep Learning (DL) [16–19].

Previous works and systematic reviews mentioned the importance of studying input
relationships concerning outputs and applying methods such as correlations to identify
and select variables that should be of more importance and help model learning. One
such feature is solar irradiance, with several mentions of cloud opacity and module tem-
perature [20]. In [18], the authors summarized the findings of other approaches and the
data used to perform PV forecasting, and presented their choice of features through the
aforementioned correlation, namely solar irradiance, temperature, and humidity.

Forecasting performance can result in direct economic consequences, where this
information can influence usage of energy generation reserves and peer-to-peer energy
trading markets. Therefore, accurate PV forecasts are in demand, and a lack of accuracy
can lead to loss of revenue [21,22]. Similarly, accurate forecasts have been studied in the
context of energy markets, with smaller errors benefiting the users and leading to increased
profits [23].

Several works have previously investigated the impact of seasonality in the context
of PV production [24–26]. In [24], the authors reported that machine learning models that
consider seasonality tend to exhibit lower error rates, between 5% and 25%, compared to
models that do not consider such variables. Works such as [25] have attempted to use and
predict seasonal traits that may benefit more accurate outputs.

2.2. eXplainable Artificial Intelligence (XAI)

XAI is an area of research propelled by the question, “Why do models output the
values they do?” Some of its main contributions to the AI community include building
trust in trained models, model debugging, model fine-tuning, and reasoning [27,28]. This
is achieved by calculating and assigning impact weights for features, such as specific pixel
values for areas of an image or an overall weight for a variable in a regression problem.

While some ML algorithms are very simple to explain and it is easy to infer the reasons
for outputs and model behavior (e.g., linear regressions and simple decision trees), other
approaches, such as neural networks, work in ways that are not as easily understood.
As there is usually a trade-off between model performance and explainability, XAI is
advantageous as it can provide insights into these black-box models, where the behavior is
not always apparent and there is not a straightforward explanation of the outputs [27,29,30].
This helps to build model trust for the end-users, as explanations may validate the model
reasoning for the users [27]. For example, a community manager may validate model
decisions taken by a model when its behavior is more explicit and justified.
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Methods such as Grad-CAM and Integrated Gradients have emerged and use model
internals (i.e., neural network layer gradients). Grad-CAM can highlight the pixel impor-
tance in images and provide a visual representation for the end-user as to why the model
provided its output [31]. However, model internals are not always available. Therefore,
methods such as LIME and SHAP have been proposed [32,33]. These methods focus on
varying the model input and studying model outputs, establishing relationships between
features and calculating their respective importance regarding the outputs. In XAI, there
is also a distinction between local and global explainability. Local explainability aims to
provide insights into the reasoning behind individual prediction values. In contrast, global
explainability focuses on understanding the model’s overall behavior and decision-making
process.

2.3. PV Forecasting and XAI

While the importance of certain features has been well established in the literature,
their impact on PV forecasting is not always apparent [16]. XAI can thus be considered and
applied to PV forecasts to understand how the features are directly related to outputs.

Some works developed in this area have used XAI to gain insights into how a model
makes its predictions [14,15]. These works applied XAI to random forests and XGBoost
ensemble algorithms, respectively. In [14], the authors provided a comparison between
LIME, SHAP, and Explain Like I’m 5 (ELI5), and reported that SHAP was the only method
among the ones used that delivered a global explanation, although being the method that
was computationally more expensive and time-consuming. In [15], the authors used ELI5
and reported Root Mean Squared Error (RMSE) scores for models built with all available
features and models built with just a subset, showing a decline in performance for the latter.
Both works highlight the need for explainable models to improve efficiency and trust in
forecast solutions.

In [9], the authors explored the application of SHAP to probabilistic models in the
context of PV forecasting, comprehensively analyzing model behavior learned feature
importance and conducting experiments across seasons. However, this work did not
examine how SHAP values varied across seasons. Given that factors like solar irradiance,
temperature, and weather patterns change significantly with the seasons, understanding
these variations in SHAP values could offer deeper insights into feature impacts and lead
to more accurate and robust forecasting.

Utilizing XAI as a feature selection mechanism has only seldom been reported in the
literature [9,15], and no clear methodology to achieve this has been provided. For example,
in [9], the authors experimented with removing weather features such as information
on precipitation, temperature, and wind speed, since these were not consistently used
across the models. A decrease of around 6% in the RMSE metric was observed when
discarding these features, indicating that using explanation as a feature selection can be
a promising approach. In [15], a similar experiment was developed, where the authors
trained a second model after removing the two least important features according to the
ELI5 method. Interestingly, in this case, the authors reported an increase in the RMSE in
the second model (from 7.22 with all features to 8.22 with a subset of features). Ultimately,
these findings highlight the need for further research to better understand when and how
XAI can effectively guide feature selection.

2.4. Summary

Overall, this short literature review underscores the importance of XAI in PV produc-
tion forecasting, particularly in understanding complex models and building trust through
transparent predictions. Seasonality is critical, with models that account for seasonal varia-
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tions generally showing improved accuracy. Furthermore, while XAI offers the potential
to guide feature selection to enhance forecasting, results have been mixed, indicating the
need for further research to establish reliable methodologies.

3. Methods
3.1. Model Explanations with SHAP

The methodology for explaining models using SHAP values is depicted in Figure 1.
The first step involves training and testing different PV production mapping algorithms,
including a hyperparameter search to optimize the model outputs. Then, the trained model
and the test datasets are used to calculate and rank the impact of the different features
according to their SHAP value.

SHAP ExplainerPV Production Mappings

Best Model

Hyperparameter
Search Training

Training Data Test Data

SHAP Value Calculation

Feature N

Feature 1
...

SHAP Rank

1. Feature

N. Feature
...

Testing

Forecasting Algorithms

Figure 1. Proposed methodology for explaining PV production mappings using SHAP values.

3.1.1. PV Production Mapping Algorithms

The work presented in this paper leverages two ML algorithms, XGBoost [34] and Tab-
Net [35]. These algorithms were selected for being fundamentally distinct, with XGBoost
being a decision tree ensemble and TabNet being a Deep Neural Network (DNN) architec-
ture, as well as not having applications limited to time series data, unlike approaches such
as ARIMA and recurrent neural networks.

XGBoost

The XGBoost algorithm is a modified boosted decision tree ensemble with several
optimizations for better scalability. One of the adopted mechanisms for optimizing the
algorithm lies in a function approximation for splitting features instead of relying on the
exact greedy algorithm, making the process more efficient. It was also developed to tackle
sparse data, i.e., missing rows in data, contributing to the model’s robustness and further
improving model training times. This algorithm also features an additional regularization
term in its loss function, which helps prevent overfitting, with the authors mentioning that,
in practice, it also affects model complexity, favoring less complex models. Other factors
contributing to its adoption are the training and inference speeds and consistency between
runs. These factors allow for better model prototyping, speed up the process, and ensure
the results are reproducible within an acceptable margin. In this work, the packages xgboost
(1.7.6), tensorflow (2.10.0), tabnet (0.1.6), and shap (0.42.1) were used.

TabNet

The TabNet algorithm, developed by Google, aims to harness the power of deep neural
networks (DNNs) to create effective models for tabular data, a domain where DNNs are
not as dominant compared to fields like computer vision [35]. The TabNet architecture is
built around two core components: Attention Transformer Blocks and Feature Transformer
Blocks. These blocks are sequentially stacked, with each additional block increasing the
model size and complexity. Feature Transformer Blocks process input features to produce
attention and feature output vectors, with the attention output passed to the subsequent
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Attention Transformer. The Attention Transformer layers are designed to extract the
significance of features, allowing for the internal selection of relevant features for each
sample. In this work, we used an implementation of the TabNet found on GitHub (TabNet,
https://github.com/titu1994/tf-TabNet ( accessed on 4 of November 2024) (version: 0.1.6)
that provided support for TensorFlow 2.0 versions).

3.1.2. Training and Testing Procedures

Before model training, a hyperparameter search was conducted using Optuna [36]
to search the parameter space more efficiently, set to 100 trials, with each trial running
for 20 epochs and reporting the RMSE on the test set. This allowed the model to define
parameters to learn and generalize better on a given task. The hyperparameters and
their search space are presented in Table 1. The search space for TabNet was initially
defined as suggested by the original paper [35], although empirical knowledge allowed
narrowing down variables and their respective values. The computational overheads in
the hyperparameter optimization (HPO) step varied according to the chosen algorithm,
with XGBoost being faster and TabNet comparatively more time-consuming. However, this
overhead applies only to the HPO step and did not affect the subsequent model training
and inference. The code used for the hyperparameter optimization can be found on
GitHub (Code for HPO https://github.com/ECGomes/pv_forecast/blob/main/model_
hyperparams.py (accessed on 5 of March 2025)).

Table 1. Hyperparameter search space.

XGBoost TabNet

Number of Estimators (50–5000) Feature Dimension Space (32–72)
Maximum Depth (10–5000) Output Dimension Space (4–12)
Alpha regularizer (10−5–10−3) Number of Decision Steps (1–4)
Lambda regularizer (10−5–10−3)

After the hyperparameter search, ten models were trained with random seeds for each
algorithm, to minimize variance across runs, and the best-performing model was selected.
The selection criterion was the daily average RMSE, a metric commonly used in related
works (e.g., [9,15]). Specifically, the RMSE was calculated for each day in the test set and
then averaged across all days. The RMSE is defined in Equation (1), where n represents the
number of data records considered, and y and ŷ stand for the ground truth and predicted
values, respectively .

RMSE =

√
1
n

n

∑
i=1

(
yi − ŷi

)2
(1)

The XGBoost models ran until convergence, while the TabNet models had an
EarlyStopping callback that allowed halting the training once a certain amount of epochs
had passed and the validation score had not improved , set to 20 epochs. Each model had
as input a single record of data containing all the features described above for the dataset.
The output of both models was a single point with the prediction of solar production, i.e.,
feature values at noon to output PV values at that same instant.

The models were trained using TensorFlow on a machine configured with an NVIDIA
3070, AMD Ryzen 9 5900X, and 128 Gb RAM [37]. The seed values for Python (3.9), Numpy
(1.24.4), Tensorflow (2.10.0), and Optuna (3.3.0) were set to 69 for consistency and to allow
reproducibility.

https://github.com/titu1994/tf-TabNet
https://github.com/ECGomes/pv_forecast/blob/main/model_hyperparams.py
https://github.com/ECGomes/pv_forecast/blob/main/model_hyperparams.py
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3.1.3. SHAP Explainer

In this work, we used SHAP values [33], a model-agnostic method that can be applied
to pretrained models. SHAP was also selected for its higher consistency [13] and strong
theoretical foundation, as well as being able to provide local and global explanations [33].
The values produced and presented in this work range from negative to positive. In
this context, negative SHAP can be interpreted as influencing the model to output lower
forecast values. Similar reasoning can be applied to positive SHAP, promoting higher
forecast values. It is important to mention that, while an impact may be positive, it may
occur when a feature takes a negative value, with the reverse also being true. An example
of this would be higher temperature values decreasing cell performance and thus hurting
the forecasts.

To achieve generalization, the SHAP explainer was employed for the entirety of the
test set, obtaining the SHAP values for each feature for each sample in the dataset. To rank
features, the mean of absolute SHAP value per feature was considered, such that

Mean_Abs_SHAPf eature =
1
S

S

∑
s=1

|SHAPs
f eature| (2)

where SHAPs
f eature represents the SHAP value of a particular feature at sample s of the

test set comprised of S samples. The absolute value is necessary to avoid canceling out
during the averaging step, since the impacts can be positive or negative for each sample.
To calculate the SHAP values, the SHAP Python library (SHAP Python, https://shap.
readthedocs.io/ (accessed on 4 of November 2024) (version: 0.46.0)) was used.

3.2. Feature Selection with SHAP

Following the initial experiment, SHAP was employed to exclude features that exhib-
ited a low contribution for the final forecast. For this purpose, a threshold of k features
relative to the total features was considered, with the top k most important features carrying
over to the next model iteration. The SHAP values were always calculated by the end of
an iteration, allowing an iterative filtering and model assessment process. A performance
threshold of E% against the baseline performance was used, considering the model trained
with all the features. Should the performance decrease by a factor larger than stipulated,
the process was halted and the previous iteration model was selected. Figure 2 illustrates
the described methodology.

Select Top K
Features

SHAP ExplainerPV Production Mappings YESMetric Diff ≤ E 

Return
Previous

Interaction
Model

Figure 2. Proposed methodology for feature selection using SHAP values.

4. Evaluation Methodology
This section provides an overview of the algorithms and information regarding the

dataset and data processing used throughout this work.

4.1. PV Production and Solar Irradiance Data

This paper used a real-world PV production dataset containing data for a three-phase
installation in southern Madeira Island, Portugal. The PV production of this dataset was
metered at 1 min intervals, spanning from January 2019 to March 2021 [38,39]. The installed

https://shap.readthedocs.io/
https://shap.readthedocs.io/
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PV capacity was 3.92 kW and remained the same during this period. Solar irradiance and
weather data were downloaded from SolCast [40] using the geographic coordinates of the
PV installation to complement the PV data. The solar irradiance data were downloaded
at a resolution of 30 min over the same period as the PV production data. This resolution
was used because it matches SolCast’s real-time API at the time of writing, allowing for
future deployments that use this work’s findings and are aligned with the needs of ongoing
activities.

4.1.1. Data Pre-Processing

The resolution chosen for this work was 15 min, as this is a compromise between
the 30 min resolution of the mentioned API and the resolution of the PV data in the
dataset. Furthermore, a 15 min interval is adequate for day-ahead PV forecasting, because
it balances the need for detailed, actionable information and the practical considerations of
computational efficiency and grid operation requirements [21,41]. To achieve the desired
temporal resolution, the PV data of the dataset were downsampled from their original
resolution of 1 min by averaging the values over 15 min windows. For the data acquired
from SolCast, the values were upsampled from the original resolution of 30 min to 15 min
using forward filling.

Additional data cleansing was also necessary on top of the solar PV production data
for the dataset. More precisely, a two-step approach was followed. First, identification of
incorrect readings, e.g., PV production much higher than the PV nominal capacity (replaced
with NaN) and PV production during the night (replaced with zero). Furthermore, during
the night, the PV production data were consistently around −3.5 W, possibly due to the
consumption of the PV system itself—these values were also set to zero.

4.1.2. Input Features

The dataset comprised all features made available by Solcast, complemented with
four time-related features resulting from the timestamp’s cosine and sine trigonometric
transformations [42]. This information was added to the relay time information of the
model cyclically, so that 23:30 is close to 00:00, and the 31st of December is numerically
close to the 1st of January. For more information on the SolCast features, we refer to
the documentation found on the website (SolCast documentation, https://solcast.com/
irradiance-data-methodology(accessed on 4 of November 2024)).

These features are listed in Table 2. Figure 3a illustrates some domain features, and
Figure 3b depicts the considered exogenous features. Day X and Day Y result from the
transformation of a timestamp with regards to a day, while Year X and Year Y relay the
cyclic nature of a year. All features used were normalized to a scale of 0 and 1.

Table 2. Domain and exogenous features used in this work.

Input Type Features

Domain

AirTemp, AlbedoDaily, Azimuth, CloudOpacity, DewpointTemp, Dhi,
Dni, Ebh, Ghi, GtiFixedTilt, GtiTracking, PrecipitableWater,
RelativeHumidity, SnowDepth, SurfacePressure, WindDirection10m,
WindSpeed10m, Zenith

Exogenous Day X, Day Y, Day Z, Year X, Year Y

Experiments with tilted solar irradiation values were conducted to determine whether
horizontal or tilted values should be used. To this end, models were trained using horizontal
solar irradiance, tilted solar irradiance, and models with both tilted and horizontal solar
irradiance. No statistical differences were found, and all features were preserved. Although

https://solcast.com/irradiance-data-methodology
https://solcast.com/irradiance-data-methodology
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there was the possibility of feature redundancy, this presented itself as a scenario that could
test whether the proposed methodology reduced model data requirements and lightened
computational loads.

(a) Domain features (b) Exogenous features

Figure 3. Examples of domain and exogenous features for a period of 24 h.

4.2. Experiments

This section presents the specifics of the individual experiments conducted to validate
the proposed methods, following a top-down approach.

4.2.1. Year-Long and Seasonal Model Explanations

The application of the SHAP for model explanations was tested following a two-step
approach. The first step relied on using the trained models and producing their predictions.
These predictions were analyzed concerning their SHAP values, offering insights into
the feature importance and impact on outputs. The goal of this experiment was to gain
a global view of the impact distribution, as well as to observe prominent features. The
second step consisted of analyzing the impact of seasonality on the feature importance.
This approach offered more careful and in-depth observations of the SHAP results and
established possible differences between seasons. This experiment aimed to understand
if there were differences between the rankings of features across seasons, as well as their
impact values. The test set was divided into seasons and analyzed separately to achieve this.
Differences between seasons were reported, both using a single algorithm and between
algorithms.

This experiment was conducted using a train–test split on the entire dataset. Specifi-
cally, the data for 2019 were used for training both algorithms, whereas the data for the
first four months of 2020 were used for validation. The remainder of 2020 was utilized for
testing.

4.2.2. Feature Selection and Benchmark

This experiment analyzed possible relationships between SHAP and performance,
presenting a selection method to balance the model performance and computational load.
Finally, a benchmark with two other feature selection methods was also presented to
validate the proposed methodology. The selected benchmark feature selection methods
were the Spearman correlation of features and output and the variance threshold method
[43]. One important aspect is that these two methods were applied directly to the dataset
and used earlier in the pipeline.
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The first method relied on the Spearman correlation coefficient to determine whether
a feature was related to the desired output. A threshold of 0.80 was established, with
features presenting coefficients between −0.8 and 0.8 being discarded. The second method
selected features based on how much variance a subset of features could explain. We
set the threshold to 0.50, meaning that features incapable of explaining at least 50% of
variance in the data were disregarded. Both the correlation and variance thresholds were set
empirically. Afterward, new models were trained with the subset of selected features under
the same conditions as the previous set. The findings were reported using the same metric
to provide an accurate side-by-side representation of the effectiveness of the techniques.

A record of RAM usage was maintained to illustrate how feature selection could help
reduce the computational load during model training. Although RAM may not be the ideal
measure for assessing the full computational demands of model training, it served as the
most directly comparable metric between the two models, given that different hardware
resources were used for training and inference. Specifically, XGBoost was trained on the
CPU, while TabNet was trained on the GPU.

5. Results and Discussion
5.1. Year-Long Effect of Input Features

The results obtained from Experiment 1 can be seen in Table 3. The features are
organized by mean absolute SHAP values for both algorithms, and the original values
are visible in Figure 4a,b. Each feature can be interpreted as contributing positively or
negatively to model prediction depending on its SHAP value (horizontal axis), while the
coloring indicates the real values of the features themselves. For example, when the Ghi
feature has a strong positive value (magenta in the Figures) it influenced the output towards
a higher prediction value. The reverse also holds, as when features present a low value (or
even zero) they had a negative SHAP impact value and lower model forecast.

(a) XGBoost (b) TabNet

Figure 4. XGBoost and TabNet overall SHAP impact values. Each point represents an individual
training example, with its color indicating the magnitude of a specific feature’s value. The horizontal
position of each point reflects the impact of that feature on the model’s output.

The results of our experiment suggest that forms of irradiance (Gti and other related
features) were indicated as being the most important to the trained models. The cosine
transformation of the intra-day timestamp (Day X) was indicated as being the most relevant
for TabNet, potentially acting as a substitute for the information of irradiation. Upon further
inspection (also visible in Figure 3b), Day X assumes lower values during the portion of the
day when sunlight is available.

Differences in feature importance across models can be attributed to model charac-
teristics, intrinsic behaviors, and SHAP calculations. From a model perspective, TabNet
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is designed to extract the maximum amount of information from a feature and combine
it with others, to achieve good generalization through layers of abstraction characteristic
of neural networks. From a SHAP calculation viewpoint, SHAP attributes impact values
according to the direct impact on model outputs and feature influence on others. It is
hypothesized that Day X may have been a feature that helps stabilize output values, act-
ing as a regulator for other feature subsets. However, XGBoost did not consider Day X
as important as TabNet, possibly due to the previously mentioned similarity of carried
information relative to irradiation. Overall, the most important subset of features was a
combination of irradiation values, time of day, and to some extent, cloud opacity.

Table 3. Rankings for feature impact by SHAP values.

XGBoost TabNet
Rank Feature Value Feature Value

1 GtiFixedTilt 0.1316 Day X 0.0641
2 GtiTracking 0.0356 Dhi 0.0206
3 Day Y 0.0234 GtiTracking 0.0181
4 Ebh 0.0143 GtiFixedTilt 0.0173
5 Day X 0.0065 Day Y 0.0167
6 Ghi 0.0061 Ghi 0.0145
7 Dhi 0.0057 CloudOpacity 0.0118
8 Zenith 0.0048 Ebh 0.0113
9 CloudOpacity 0.0044 Dni 0.0057

10 Azimuth 0.0038 Zenith 0.0052
11 AirTemp 0.0036 Azimuth 0.0051
12 Year X 0.0035 Year X 0.0045
13 Year Y 0.0030 Year Y 0.0040
14 DewpointTemp 0.0027 AirTemp 0.0036
15 SurfacePressure 0.0026 AlbedoDaily 0.0036
16 PrecipitableWater 0.0023 WindSpeed10m 0.0028
17 Dni 0.0022 WindDirection10m 0.0027
18 WindSpeed10m 0.0021 PrecipitableWater 0.0023
19 WindDirection10m 0.0016 DewpointTemp 0.0021
20 RelativeHumidity 0.0013 RelativeHumidity 0.0015
21 AlbedoDaily 0.0005 SurfacePressure 0.0007
22 SnowDepth 0.0000 SnowDepth 0.0000

5.2. Seasonal Effect of the Input Features

XGBoost did not exhibit a great change in the rankings of the features when consider-
ing a more granular analysis, with the top 10 features remaining mostly unchanged. The
middle set of features were the most affected by season changes, with the most significant
being the air temperature, gaining importance during winter, while losing relevance during
the remaining seasons. The Day X feature exchanged rankings with Ghi, further reinforcing
our hypothesis of carrying similar information. The collected information on the seasonal
rankings of features using XGBoost can be found in Table 4. Considering TabNet, a greater
number of changes through seasons can be observed, largely maintaining the top sub-
set of features. The most notable alterations of rankings were the increase in impact of
cloud opacity during autumn and the overall increase in relevance of irradiance-related
features during summer. Our findings using TabNet can be found in Table 5. Based on
these findings, we can conclude that while the impact of features may vary seasonally, it is
not significant enough to warrant a change in the way they are treated. These results are
consistent with the findings in the previous section.
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Table 4. XGBoost seasonal impact ranking changes.

Feature Overall Spring Summer Autumn Winter

GtiFixedTilt 1 1 (-) 1 (-) 1 (-) 1 (-)
GtiTracking 2 2 (-) 2 (-) 2 (-) 2 (-)
Day Y 3 3 (-) 3 (-) 3 (-) 3 (-)
Ebh 4 4 (-) 4 (-) 4 (-) 4 (-)
Day X 5 6 (↓) 6 (↓) 5 (-) 5 (-)
Ghi 6 5 (↑) 5 (↑) 7 (↓) 7 (↓)
Dhi 7 7 (-) 8 (↓) 6 (↑) 6 (↑)
Zenith 8 8 (-) 9 (↓) 8 (-) 9 (↓)
CloudOpacity 9 9 (-) 7 (↑) 9 (-) 10 (↓)
Azimuth 10 11 (↓) 10 (-) 10 (-) 11 (↓)
AirTemp 11 15 (↓) 12 (↓) 12 (↓) 8 (↑)
Year X 12 10 (↑) 11 (↑) 11 (↑) 14 (↓)
Year Y 13 12 (↑) 13 (-) 14 (↓) 13 (-)
DewpointTemp 14 13 (↑) 18 (↓) 19 (↓) 12 (↑)
SurfacePressure 15 14 (↑) 15 (-) 13 (↑) 18 (↓)
PrecipitableWater 16 16 (-) 16 (-) 15 (↑) 15 (↑)
Dni 17 17 (-) 14 (↑) 16 (↑) 16 (↑)
WindSpeed10m 18 18 (-) 17 (↑) 17 (↑) 17 (↑)
WindDirection10m 19 19 (-) 19 (-) 18 (↑) 19 (-)
RelativeHumidity 20 20 (-) 20 (-) 20 (-) 20 (-)
AlbedoDaily 21 21 (-) 21 (-) 21 (-) 21 (-)
nowDepth 22 22 (-) 22 (-) 22 (-) 22 (-)

Table 5. TabNet seasonal impact ranking changes.

Feature Overall Spring Summer Autumn Winter

Day X 1 1 (-) 1 (-) 1 (-) 1 (-)
Dhi 2 2 (-) 3 (↓) 2 (-) 2 (-)
GtiTracking 3 3 (-) 2 (↑) 5 (↓) 5 (↓)
GtiFixedTilt 4 5 (↓) 6 (↓) 4 (-) 3 (↑)
Day Y 5 4 (↑) 4 (↑) 6 (↓) 4 (↑)
Ghi 6 6 (-) 5 (↑) 7 (↓) 6 (-)
CloudOpacity 7 7 (-) 8 (↓) 3 (↑) 7 (-)
Ebh 8 8 (-) 7 (↑) 9 (↓) 8 (-)
Dni 9 10 (↓) 9 (-) 14 (↓) 12 (↓)
Zenith 10 9 (↑) 10 (-) 13 (↓) 11 (↓)
Azimuth 11 12 (↓) 15 (↓) 8 (↑) 9 (↑)
Year X 12 13 (↓) 14 (↓) 10 (↑) 10 (↑)
Year Y 13 11 (↑) 12 (↑) 11 (↑) 15 (↓)
AirTemp 14 16 (↓) 11 (↑) 16 (↓) 14 (-)
AlbedoDaily 15 17 (↓) 13 (↑) 12 (↑) 13 (↑)
WindSpeed10m 16 15 (↑) 19 (↓) 15 (↑) 16 (-)
WindDirection10m 17 14 (↑) 17 (-) 18 (↓) 17 (-)
PrecipitableWater 18 18 (-) 18 (-) 17 (↑) 18 (-)
DewpointTemp 19 19 (-) 16 (↑) 19 (-) 19 (-)
RelativeHumidity 20 20 (-) 20 (-) 20 (-) 20 (-)
SurfacePressure 21 21 (-) 21 (-) 21 (-) 21 (-)
SnowDepth 22 22 (-) 22 (-) 22 (-) 22 (-)

5.3. Feature Selection

The proposed methodology was applied once for each algorithm, with an established
threshold of retaining the top 50% most impactful features. The following subset, sorted by
impact, had the following iteration on XGBoost: GtiFixedTilt, GtiTracking, Day Y, Ebh,
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Ghi, AirTemp, Dhi, Zenith, CloudOpacity, Azimuth and Day X. Considering TabNet, the
sorted subset was composed as follows: Ghi, Day X, GtiFixedTilt, Day Y, CloudOpacity,
Zenith, GtiTracking, Dni, Azimuth, Ebh, and Dhi.

TabNet presented the most changes against the baseline model impact distributions,
with Ghi becoming the highest impact feature, followed by Day X, remaining unchanged
throughout the seasons. XGBoost reported a similar impact distribution when compared
to the baseline; however, Day X became the least impactful feature. This further solidifies
our hypothesis of XGBoost interpreting Day X as a feature carrying information similar to
irradiance.

Table 6 reports the findings relative to the application of the proposed methodology.
These findings indicate that both models benefited from the presented methodology, ex-
hibiting lower RMSE values. We attribute these improvements to the removal of noise,
detrimental to model performance and leading to false relationships between features.
Furthermore, the average usage of RAM while training is included to provide insights
on the effects of feature removal in terms of computational resources, found in Table 7.
Although it is not possible to draw straightforward conclusions regarding the RAM usage
of the models, the overall tendency was to require fewer resources. We draw attention to
the methodology including a hyperparameter optimization step that may have skewed
results and produced larger models on subsequent iterations.

Table 6. RMSE benchmark using the proposed methodology.

Library Overall Spring Summer Autumn Winter

XGBoost (baseline) 430.4 466.1 420.1 410.4 423.8
XGBoost (it. 1) 413.4 451.4 417.1 407.6 375.0
XGBoost (it. 2) 433.3 475.7 413.9 424.4 417.7
TabNet (baseline) 390.7 421.1 395.3 369.6 375.2
TabNet (it. 1) 361.8 391.9 315.8 373.4 363.4
TabNet (it. 2) 368.7 389.6 324.4 381.2 377.5

By conducting a second iteration of the proposed methodology, the overall RMSE val-
ues rose, although maintaining better performance against the baseline models. The sorted
subset for the second iteration, considering XGBoost: GtiFixedTilt, Day Y, GtiTracking,
Ghi, and Ebh, with the impact distribution being prevalent across seasons. TabNet con-
sidered the following sorted subset: Ghi, Day X, GtiFixedTilt, Day Y, and CloudOpacity,
with the only alteration in ranking being the exchange of Day X and GtiFixedTilt during
winter.

5.4. Benchmark

The variance feature selection method used for benchmarking presented a decrease
in performance in all cases and poor overall results across seasons, with XGBoost models
being the most affected, exhibiting higher RMSE values.

Feature selection through correlation presented a significant performance gap, with
models with features selected through correlation performing worse than their baselines.
The results for this experiment are presented in Table 8. Ultimately, these results can
be attributed to the dataset being composed of a single PV installation, making it more
susceptible to feature changes. However, while higher volatility increases the forecasting
challenge, it further reinforces the importance of effective feature selection methods.
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Table 7. Training RAM usage.

Library Average RAM (MB)

XGBoost (baseline) 55.4
XGBoost (it. 1) 44.9
XGBoost (it. 2) 12.5
TabNet (baseline) 25.5
TabNet (it. 1) 45.0
TabNet (it. 2) 17.8

Table 8. Feature selection methods benchmark RMSE results.

Library Overall Spring Summer Autumn Winter

XGBoost (baseline) 430.4 466.1 420.1 410.4 423.8
XGBoost (corr) 509.6 528.4 523.3 497.0 490.0
XGBoost (var) 1023.8 1168.6 931.2 890.5 1107.9
TabNet (baseline) 390.7 421.1 395.3 369.6 375.2
TabNet (corr) 398.6 410.2 394.7 392.9 397.0
TabNet (var) 988.8 1068.5 1140.8 843.8 890.0

For comparative purposes, a day of the testing set is provided in Figure 5. The day
4th of August was selected, as it presents a smooth PV generation profile that allows
the exemplification of the effectiveness of the proposed methodology. It can be observed
that TabNet closely followed the ground-truth data, as well as the first iteration of the
methodology. XGBoost and its respective iteration followed the general trend but exhibited
higher errors across the entire production cycle. The second iteration of TabNet showcased
the need for stopping criteria, presenting performance degradation.

Figure 5. Model performances on a summer day for the testing set (4 August 2020).

While several studies have explored forecasting models, direct comparisons with
other works are challenging, due to differences in used data and metrics. Notably, studies
delving into PV and XAI have typically reported R2 values, while this work presents RMSE.
Despite these differences, the proposed methodology remains applicable and capable of
being integrated into other forecasting frameworks.

6. Conclusions
This work proposed a methodological framework for applying XAI to PV forecasting

algorithms using SHAP local explanations. The framework was applied to a real-world
dataset to understand how the feature important would vary throughout the year. The
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obtained results showed that irradiance features like Gti were the most important for the
models, with TabNet also highlighting the cosine transformation of the intra-day timestamp
(Day X) as a substitute for irradiance. XGBoost’s top features remained stable across seasons,
though air temperature gained relevance in winter, while TabNet showed more seasonal
changes, such as increased cloud opacity in autumn.

The SHAP values were further leveraged to help in feature selection, where the 50%
most important feature subset was kept and used to train subsequent models. The results
obtained show that for XGBoost, the key features included GtiFixedTilt, GtiTracking,
and Day Y, while TabNet’s subset prioritized Ghi, Day X, and GtiFixedTilt. Overall,
TabNet showed the most changes, with Ghi as the top feature, whereas XGBoost treated Day
X as least important, reinforcing the idea that it carried similar information to irradiance.

One limitation of this work is that the data were collected on Madeira Island, where
proximity to the Equator may have reduced the seasonality variability. Future studies
should apply the methodology in other locations to validate its effectiveness and the
seasonality conclusions drawn here. Another limitation is the narrow focus on resource
usage, as only RAM consumption during model training was analyzed. Future studies
should collect a broader range of resource data, to better understand computational costs.

Further research is needed to explore the methodology’s potential in areas beyond
PV mapping and forecasting, such as net-load forecasting. A sensitivity analysis of the
threshold parameters would be beneficial, allowing for fine-tuning, rather than relying on
the 50% threshold used in this study. Additionally, applying other forecasting strategies,
like probabilistic methods, could enhance understanding of the methodology’s impact.
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