
Conformal Multilayer Perceptron-Based
Probabilistic Net-Load Forecasting for Low-Voltage
Distribution Systems with Photovoltaic Generation

Anthony Faustine∗† and Lucas Pereira†
∗Center for Intelligent Power (CIP), Eaton Corporation, Dublin, Ireland; †ITI, LARSyS, Técnico Lisboa, Lisbon, Portugal
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Abstract—Probabilistic net-load forecasting in Low-Voltage
(LV) distribution networks is essential in light of the increased
variability introduced by the widespread integration of renewable
energy sources (RES). Various probabilistic approaches based on
neural networks have been proposed to solve this challenge. This
study introduces lightweight neural network-based conformal
prediction (Conformal-MLPF) for net-load forecasting within
an LV power distribution network. It uses Split Conformal
prediction to transform a lightweight MLP-based point forecast
into a probabilistic forecast. Our validation on two real-life LV
substations datasets suggests that the proposed Conformal-MLPF
achieves a better tradeoff between forecasting performance and
model complexity without requiring restrictive assumptions about
data distribution.

Index Terms—Conformal prediction, Uncertainty Estimation,
Low Voltage Distribution Network, Neural Network, Net-Load,
Probabilistic Forecasting, Quantile Regression

I. INTRODUCTION

The ongoing energy transition in Low Voltage (LV) net-
works, which are characterized by the massive integration of
Renewable Energy Sources (RES) such as Photovoltaics (PV)
and wind power resulting in growing complexity in operating
and managing the grid [1], [2]. For instance, a prevalence
of RESs in LV networks will result in bidirectional power
flow, which can cause voltage fluctuations and uncertainty
in LV network load profiles [2]–[4]. Additionally, with more
households adopting PV systems [3], [5], it becomes more
challenging for Distribution System Operator (DSO)s to man-
age the LV network effectively due to reduced visibility of
the actual power demand [6], [7]. In this scenario, accurate
forecasting of demand and generation is vital to optimizing
the performance of the LV distribution network [8], [9].

Probabilistic forecasting methods have gained popularity
in predicting net-load, which combines load demands and
generation forecasts. These methods provide valuable insights
into uncertainty and prediction intervals, enabling grid opera-
tors to develop risk-based strategies for effectively operating
and managing the LV network. Among these methods, Deep
Neural Networks (DNN)s have shown particular promise for
net-load forecasting in LV power distribution networks. Re-
searchers have explored several probabilistic DNN approaches,
including Normalizing Flow [10], Gaussian distributions [6],
and Quantile Regression (QR) [7], [11]. Other researchers
use Bayesian Neural Networks (BNNs) [12], which produce

probabilistic forecasts by treating the DNN model weights as
random variables with a corresponding probability distribution.

Two main methodologies are employed in producing short-
term net-load forecasting: disaggregated (additive) and ag-
gregated (integrated). The disaggregated method involves the
decomposition and prediction of the net-load in terms of its
constituent parts, such as load demand and PV generation.
Subsequently, the individual forecasts are merged to estimate
the net-load [3], [8], [9], [13]. On the contrary, integrated
methods exclusively rely on historical net-load data and other
exogenous variables that impact RES and power demands to
predict the future net-load. These forecasting methods assume
that changes in the net-load are closely related to variations in
RES generation and power demands [4]. Numerous studies in
recent literature have proposed various integrated forecasting
methods, as evidenced by research such as those mentioned
in [6], [8], [9], [11], [12].

While several works on probabilistic net-load forecasting
have been proposed, the effectiveness of Conformal Prediction
(CP) in net-load forecasting remains unexplored. CP is a
distribution-free uncertainty estimation method that constructs
valid prediction intervals [14]. These intervals provide a range
of potential values within which the forecasted data may
fall, along with a specific confidence level. Importantly, CP
achieves this without making any assumptions about the data
distribution or the model [15], [16]. Recent applications of
CP have been observed in both load forecasting and PV
forecasting [15], [17]. However, there is limited research
exploring the effectiveness of CP specifically for net-load
forecasting, which combines both PV and load forecasting.

This paper addresses this gap by investigating CP ’s effec-
tiveness in net-load probabilistic forecasting, comparing it with
established methods. Adopting an integrated approach, we
introduce Conformalised Multilayer Perceptron based Forecast
(Conformal-MLPF), a lightweight neural network model for
accurate point forecasts with CP-based uncertainty estimation.
Specifically, we employ Split Conformal Prediction (SCP),
also called Inductive Conformal Prediction (ICP), which lever-
ages calibration data to generate predictive intervals for any
trained model. We evaluate this approach against QR and
BNN, utilizing actual net-load data from LV substations in
Portugal and the UK. This comparative analysis sheds light
on this method’s relative effectiveness and applicability in net-



load forecasting.
The structure of this paper is as follows: Section II dis-

cusses the background and introduces the Conformal-MLPF.
Section III details the case study, including the dataset, input
features, performance metrics, experiment descriptions, and
evaluation methodology. Section IV presents and discusses
the experimental results. Finally, Section V summarizes key
findings, limitations, and future research directions.

II. METHODS

A. Problem Formulation and Split Conformal Prediction

The main focus is to address short-term net-load forecasting
problems, which involve predicting the near-future net-load
yt+1:t+H over a forecast horizon H ranging from several
hours up to one week. To make these predictions, we use
a base predictor fθ(xL, cH) that utilizes historical features
xt−L:t with a time lag of L, as well as future covariates
ct+1:H . Thus given set of observed data Dtrain our goal is
to contsruct a predictor fθ(y|x, c) that allows us to predict H
steps confidence interval C into the future such that:

ŷH ∼ fθ(xL, cT ) (1)

CP methods can be broadly divided into two categories:
those that involve retraining the model multiple times and
those that use sample splitting, known as split conformal
methods [18]. Compared to full conformal, SCP formulates
conformal prediction using a dataset to train the predictive
model and a calibration dataset on which to compute a
critical non-conformity score, used to define the width of
the prediction interval [14], [15], [19]. The SCP involves
establishing a conformity score function γ(.) to capture how
well a sample conforms to the proper training set.

γk = |yk − µθ(xk)| (2)

The non-conformity score, γ, measures the disagreement
between the model’s output and the ground truth in the
calibration data Dc independent of the training set [19]. It
assesses the conformity between the calibration’s response
values y and the predicted values µθ [15]. Thus, a larger γ
implies a poor calibrated model. Therefore the goal of SCP
is to obtain a prediction interval Ck+1 for a new data point
xk+1 given the calibration data score {γ0, . . . γk} such that

C(xk+1) = {y ∈ R : γ(xk+1, y) ≤ Q1−α(F̂k+1)} (3)

where F̂k+1(.) is the empirical c.d.f of the samples γ1:k ∪∞.
Q1−α denotes the 1 − α-quantile [18]. This is equivalent of
finding the pth smallest non-conformity score ε such that

ε = Qp ({γ0, . . . γk}) (4)

where p =
⌈
(k+1)(1−α)

k

⌉
and k is the size of the calibration

set. The ε threshold defines the size of the prediction set,
which, in its simplest form, is centered on the predicted value
such that

C(xk+1) = [µθ(xk+1)± ε] (5)

Fig. 1: Overview of conformalised-MLPF.

B. Conformal-MLPF

The Conformal-MLPF refines the Multilayer Perceptron
based Forecast (MLPF) forecasting framework introduced in
[7] to incorporate uncertainty quantification. It combines the
MLPF with SCP to quantify the uncertainty of the point net-
load forecast in a predictive interval. This integration enriches
the forecasting process by generating predictive intervals that
capture the expected variability of net-load values. The pro-
posed framework is depicted Fig. 1 and consists of three
stages: training, conformal calibration, and inference.

1) Training of deterministic MLPF: In this stage, we learn
the parameters of the deterministic MLPF to obtain fθ, which
produces point forecast µθ. The MLPF is trained on the train-
ing dataset Dtrain using a supervised loss function Lθ(y, µθ).
This loss function combines the L1 and L2 norms such that:

Lθ(y, µθ) =
1

H

H∑
t=1

λ(yt − ŷt)
2 + (1− λ)|yt − ŷt| (6)

The training objective is to minimize the expected value
of the loss function over the training data distribution:
minθ E(x,y)∼Dtrain

[Lθ(y, µθ)] where λ is the hyper-parameter
that determines the weight of each error term in the loss
function. The L2 assigns greater weight to more significant
errors, making the model more sensitive to outliers. This
can be beneficial when specific extreme errors should be
penalized more heavily, such as when predicting demand
during extreme weather events. On the other hand, the L1

is less sensitive to outliers, allowing the model to focus on
capturing overall trends rather than being overly influenced
by anomalous data points [20]. For a detailed description of
the training procedure, refer to Section II-C.

2) Conformal calibration: The subsequent stage re-
calibrates the trained deterministic MLPF model fθ using the
calibration data Dcal, following the SCP calibration procedure.
Since the trained model fθ is designed to produce multi-
horizon forecasts, denoted as yH = µθ(x), with H horizons
ranging from t + 1 to t + H , at each time step t and future
time step h where t ≤ h ≤ t + H , we define Ck

h|t(xk) as a
prediction interval for the forecasted value ŷkh produced by the
model.

For each data point k in the calibration data Dcal, we
group the obtained H forecasts to generate a vector of non-



conformity scores:

γk
H = {γt+1, . . . , γt+H} (7)

where γh is associated with the hth forecast. Therefore, for
new data point k + 1, the calibrated forecast interval with a
finite sample guarantee for each h-step is defined as:

Ch|t(xk+1) = [µθh(xk+1)± εh] ∀h ∈ [t, t+H] (8)

Utilizing the non-conformity score defined in Eq. (2) for
calibration is a common practice, as it aligns with the SCP
methodology. However, as pointed out in [17], this score, the
absolute error between the actual and forecasted values, can
lead to asymmetric intervals where the probability mass below
the lower and upper bounds may not be equal. As such, the
effectiveness of signed score (Eq. (9)) was introduced in [17].

γsgn(xk) = ykh − µθ(xk)h (9)

Unlike the absolute non-conformity score, the sign score
captures the direction of the forecast error.

3) Inference: Finally, during the inference stage, we lever-
age the trained deterministic model, denoted by fθ, and the
pth quantile non-conformity score, εh, to generate prediction
intervals.

C. MLP Architecture and Training Procedures

We utilize a scalable Multilayer Perceptron (MLP) frame-
work proposed in [11], which employs two encoders: the past
encoder gϕ(xL, cL) and the future encoder hϕ(cH). The two
encoders comprised a set of Feed-forward neural network
(FFN), BatchNorm, and a non-linear activation function as
illustrated in Fig. 2b. These encoders aim to generate repre-
sentations ϕ(gh) for historical variables and future covariates.

The research of Chu et al. inspires the design of this
framework [20], which emphasizes the significant influence
of covariate features, such as solar radiation, on future net-
load. The encoders aim to create representations for past
and future variables, denoted as ϕ(gh), which are utilized as
input to generate forecasts and their corresponding predictive
uncertainty.

ϕ(g) = gθ (E(xL)) (10)
ϕ(h) = hθ (E(cH)) (11)

ϕ(gh) = ϕ(g) + ϕ(h) (12)

where E(x; θ) = Dropout [RoPE(LayerNorm(x)].
We used two hidden layers to train all methods, each

containing 256 nodes and the SiLU activation function in
the hidden layers. For optimization, we employed the Adam
optimizer with an initial learning rate of 0.001 for all methods.
The learning rate was reduced by 0.1 when the number of iter-
ations reached 75% and 90%, respectively. For implementation
details, readers can refer to [7].
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Fig. 2: (a) The hierarchical architecture of the scalable MLPF
(b) The MLP encoder block (c) The final prediction layer for
MLP Quantile Regression (MLP-QR) (d) The final prediction
layer for Last-layer Monte Carlo dropout (MLP-MCD).

III. EXPERIMENTAL DESIGN

A. LV Substation Datasets and Input Features

The proposed approach is evaluated on two real-life substa-
tion datasets: the Madeira Low-Voltage distribution substation
dataset in Portugal (MLVS-PT) [11], and the The Stentaway
substation dataset in Plymouth-UK (SPS-UK) [21] as visual-
ized in Fig. 3.

0 2 4 6 8 10121416182022
Hour of the day

0

20

40

60

80

P
ow

er
(k

W
)

2019

2020

2021

(a) MLVS-PT

0 2 4 6 8 10121416182022
Hour of the day

−2

0

2

4

6

P
ow

er
(M

W
)

2018

2019

2020

(b) SPS-UK

Fig. 3: The net-load for the two datasets over time.

The MLVS-PT dataset includes net-load demand from a LV
substation Madeira Island, serving 100 consumers. Data was
recorded every minute from January 2019 to December 2021
and resampled to 30-minute intervals, with meteorological data
from [22].

The SPS-UK dataset contains demand, PV generation, and
weather data from a substation in Plymouth, UK1. Load de-
mand and PV generation were recorded every 30 minutes from

1https://www.nationalgrid.co.uk/pod-data-science-challenge



November 2017 to July 2020. The net-load was calculated by
subtracting PV generation from load demand, with weather
data from MERRA-22 interpolated to 30-minute intervals.

The input to the model consists of a combination of histor-
ical net-load with past and future covariates. The covariates
include the global horizontal irradiance, temperature, and var-
ious time-based features that account for weather conditions,
seasonal effects, and calendar days. Specifically, the model
incorporates time-derived features: hour, day of the week, day
of the month, and session. The session variable is a boolean
variable that takes the value of 1 during the day and 0 at night.
These features were selected based on their high correlation
with net-load demands. In line with the approach of [11],
the date-time-related features are transformed using sine and
cosine transformations to capture daily and yearly patterns.
The input features and forecasted variables were normalized
using z-score normalization.

B. Benchmarks

We empirically evaluate the performance of the proposed
conformal-MLPF compared to two commonly used proba-
bilistic forecasting methods: QR (MLP-QR) and Monte Carlo
dropout (MLP-MCD) [23]. The MLP-MCD, as illustrated in
Fig. 2d, extends the MLPF by adding dropout decoder layers.
Dropout is a regularization technique commonly used in DNN
to prevent overfitting [23]. In the context of the MLP-MCD
method, characterized by a dropout probability denoted as π,
the q distribution takes the following form:

q(θl) =

dout∏
i=1

πq(θl) + (1− π)q(θl) (13)

The MLP-MCD runs multiple forward passes through the
network during test time with dropout enabled to obtain a
probabilistic forecast. This stochastic sampling allows the
model to capture the uncertainty in its predictions [24] such
that;

σ̂ =
√
σ2
D + σ2

ϵ (14)

where σD =
√
σ2
s + exp(zϵ)2, σ2

s is sample variance defined
as σ2

s = 1
N−1

∑N
i=1(ŷi − µ̂), and µ̂ = 1

N

∑N
i=1(ŷi). σ

2
ϵ is the

variance of the homogeneous noise ϵ such that ϵ ∼ N (0, σϵ)
which account for the fact that the MLP-MCD is only an
approximation.

For QR, we use a common DNN-based QR approach
with MLP-based architecture similar to the one used in
conformalised-MLPF, as depicted in Fig. 2c. In this method,
only the quantile value function is parameterized by MLP
using fixed and predefined quantile fractions. The quantile
fractions remain fixed throughout the training and inference
process. The parameters of the MLP-QR are optimized by
minimizing the pinball loss, as defined in Eq. (15):

Lτ (ϵτ ) =
1

T

T∑
t=1

N∑
n=1

max
[
ϵτt

n
· τ, (1− τ) · ϵτt

n
)
]

(15)

2https://github.com/emilylaiken/merradownload

where ϵτ = yt −Qθ(τ̂θt)

C. Performance metrics and evaluation procedure

The following performance metrics are used to assess
the quality of a probabilistic forecast: Predictive Interval
Coverage Probability (PICP), Normalized Mean Prediction
Interval width (NMPI), and Combined Coverage, Width and
Forecasting Error (CWE). The PICP (Eq. (16)) measures
the percentage of true values that fall within the prediction
intervals, whereas the NMPI (Eq. (17)) is the normalized width
of the prediction intervals, which gives the average width of
the prediction interval [25].

PICP =
1

H

H∑
t=1

{
0, /∈ [CU

t , CL
t ]

1, yt ∈ [CU
t , CL

t ]
(16)

NMPI =
1

R
median(Cd) (17)

where Cd = {CU
1 − CL

1 , . . . CU
H − CL

H}, CU
t and CL

t are upper
and lower predictive interval, H is the forecasting horizon and
R = max{y1, . . . yH} is range of true value.

The CWE (Eq. (18)) metric measures how well a model is
calibrated. A calibrated model gives predictive intervals that
are both correct and narrow.

CWE = 2 · γnmpi · γpcip
γpicp + γnmpi

(18)

Finally, we use the Normalized Root Mean Squared Error
(NRMSE), a point-forecast metric, to assess the quality of the
point forecast.

The training was done using the backtesting cross-validation
technique outlined in [11]. Specifically, we implemented
10-fold backtesting cross-validation with expanding window
strategies, setting the initial historical period to a minimum of
12 months and the fixed future time window to 6 months. As
we moved through the time series, the sliding window was
extended by three months. In each fold, only 90% of the data
were used as training set Dtrain, and the remaining 10% were
used as calibration set Dcal.

D. Experiments Description

The evaluation focuses on two key aspects: (1) how the
two non-conformity scores (absolute error and signed error)
influence the quality of the prediction intervals, and (2)
the overall performance of conformal-MLPF against the two
baseline methods (MLP-MCD and MLP-QR).

The first experiment investigated how the two non-
conformity scores (absolute and signed errors) impacted the
quality of the prediction intervals generated by conformal-
MLPF. The MLPF model was calibrated using each non-
conformity score, and the resulting prediction intervals were
compared. In the second experiment, we compared the overall
performance of conformal-MLPF with two baseline methods:
MLP-MCD and MLP-QR. The comparison focused on point
forecasts and interval metrics.
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Fig. 4: Results comparison for four Conformal-MLPF with sign residual and absolute residual non-conformity score.

IV. RESULTS AND DISCUSSION

A. Experiment 1: Influence of Non-Conformity Score

The results are depicted in Fig. 4. It is evident from
Fig. 4a that the absolute residual non-conformity score (Abs-
score) achieves higher coverage (≥ 1 − α = 0.9) on both
datasets, while the sign-residual non-conformity score (Sign-
score) attains a PCIP (1 − α = 0.9) solely on the MLVS-
PT dataset. In both cases, the Abs-score’s PCIP is higher
than the sign-score’s, about 4% higher on MLVS-PT and
over 20% higher on the SPS-UK dataset. These results imply
that prediction intervals constructed using Abs-score tend to
encompass the actual values more frequently. However, this
higher coverage for abs-score comes at the cost of broader
coverage intervals, meaning that the absolute score provides a
less precise estimate of the forecast error. We observe from
Fig. 4c that the sign-score exhibits a lowerNMPI of 0.30
compared to 0.34 for the absolute score on the MLVS-PT
dataset and 0.23 NMPI on the SPS-UK dataset, which is
48% lower compared to that of the Abs-score. This implies
that the intervals constructed using the abs-score are broader,
as illustrated in Fig. 4e, potentially leading to less precise
predictions, unlike the sign-score, which offers a narrow
predictive interval while covering most of the true value as
shown in Fig. 4f.

The key difference between the abs-score)and the sign-score
lies in how they treat forecast errors. The abs-score prioritizes
magnitude, encompassing positive and negative errors, leading
to wider prediction intervals with higher coverage (as seen in
Fig. 4a). Conversely, the sign-score focuses solely on direction,
resulting in narrower intervals but potentially sacrificing cov-
erage. However, this tradeoff can be beneficial, as evidenced
by the sign-score’s slightly higher CWE score on the MLVS-

PT dataset (refer to Fig. 4b). The sign-score achieves greater
precision by focusing on direction, even if it misses some
errors of the same magnitude but with the opposite sign.

B. Experiment 2: Comparison with Baselines

Our second experiment compared the proposed Conformal-
MLPF against two baseline models. The results are summa-
rized in Table I. The comparison shows that Conformal-MLPF
and MLP-QR have similar forecasting accuracy, achieving
NRMSE scores of 0.09 and 0.13 on the MLVS-PT and SPS-
UK datasets, respectively. MLP-MCD exhibited slightly lower
forecasting power, reflected by higher NRMSE scores of 0.13
and 0.19 on the MLVS-PT and SPS-UK datasets.

When considering probabilistic metrics, the proposed
Conformal-MLPF performed competitively, achieving a cover-
age probability PICP of 0.84, on par with the well-established
MLP-QR. However, Conformal-MLPF has a slightly higher
NMPI (0.26) compared to MLP-QR (0.22), leading to a
marginally lower CWE. Notably, both Conformal-MLPF and
MLP-QR achieved a balance between coverage and predictive
interval width, suggesting good calibration, unlike MLP-MCD.
These results indicate that the proposed Conformal-MLPF can
be competitive with established methods such as QR without
imposing any restrictive assumptions about the underlying data
distribution.

On the SPS-UK dataset, Conformal-MLPF appears to be
slightly conservative, as indicated by its lower NMPI. This
resulted in lower PICP and CWE scores compared to MLP-
QR. However, its CWE score remains higher than that of MLP-
MCD. The wider intervals produced by MLP-MCD led to a
lower CWE score than the other non-parametric QR and MLP-
LD models, indicating less precise predictive intervals.



TABLE I: Results of comparison with baselines.

Dataset Model NRMSE PICP NMPI CWE

MLVS-PT
MLP-MCD 0.13 0.72 0.22 0.75
MLP-QR 0.09 0.84 0.26 0.82
Conformal-MLPF 0.09 0.84 0.28 0.79

SPS-UK
MLP-MCD 0.19 0.82 0.36 0.75
MLP-QR 0.13 0.96 0.32 0.83
Conformal-MLPF 0.13 0.78 0.24 0.74

V. CONCLUSION

This paper presented Conformal-MLPF, a lightweight and
efficient CP-based net-load probabilistic forecast using neural
networks. Empirical results on two real-world datasets show
that Conformal-MLPF competes with established methods like
QR without requiring restrictive data distribution assump-
tions. The study highlights the importance of the sign non-
conformity score, which focuses on forecasting error direction
and improving the balance between prediction interval cover-
age and width. This has significant implications for power
demand forecasting and the feasibility of applying CP in real-
world scenarios.

While this study explores the impact of conformal predic-
tion, specifically SCP, for net-load forecasting, future research
should incorporate advanced CP techniques. SCP provides
only marginal coverage assurance with fixed predictive inter-
vals, which may not guarantee conditional coverage for time
series with strong seasonal and heteroscedastic behavior like
net-load. Future work should investigate adaptive conformal
prediction techniques, allowing predictive intervals to adjust to
specific data points. Additionally, future research should eval-
uate Conformal-MLPF using distribution substation datasets
from various geographical locations, installed capacities, and
different RES such as wind power generation.
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