Abstract
The prospect of the energy transition is exciting and sure to benefit multiple aspects of daily life. However, various challenges, such as planning, business models, and energy access are still being tackled. Energy Communities have been gaining traction in the energy transition, as they promote increased integration of Renewable Energy Sources (RESs) and more active participation from the consumers. However, optimization becomes crucial to support decision making and the quality of service for the effective functioning of Energy Communities. Optimization in the context of Energy Communities has been explored in the literature, with increasing attention to metaheuristic approaches. This paper contributes to the ongoing body of work by presenting the results of a benchmark between three classical metaheuristic methodsâDifferential Evolution (DE), the Genetic Algorithm (GA), and Particle Swarm Optimization (PSO)âand three more recent approachesâthe Mountain Gazelle Optimizer (MGO), the Dandelion Optimizer (DO), and the Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF). Our results show that newer methods, especially the Dandelion Optimizer (DO) and the Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF), tend to be more competitive in terms of minimizing the objective function. In particular, the Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF) demonstrated the capacity to obtain extremely competitive results, being on average 3% better than the second-best method while boasting between around 2Ă and 10Ă the speed of other methods. These insights become highly valuable in time-sensitive areas, where obtaining results in a shorter amount of time is crucial for maintaining system operational capabilities.